Title of article :
Some Statistical Improvements for Estimating Population Size and Mutation Rate from Segregating Sites in DNA Sequences
Author/Authors :
Etienne K. Klein، نويسنده , , Frédéric Austerlitz، نويسنده , , Catherine Larédo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1999
Pages :
13
From page :
235
To page :
247
Abstract :
In population genetics, under a neutral Wright–Fisher model, the scaling parameter θ=4Nμ represents twice the average number of new mutants per generation. The effective population size is N and μ is the mutation rate per sequence per generation. Watterson proposed a consistent estimator of this parameter based on the number of segregating sites in a sample of nucleotide sequences. We study the distribution of the Watterson estimator. Enlarging the size of the sample, we asymptotically set a Central Limit Theorem for the Watterson estimator. This exhibits asymptotic normality with a slow rate of convergence. We then prove the asymptotic efficiency of this estimator. In the second part, we illustrate the slow rate of convergence found in the Central Limit Theorem. To this end, by studying the confidence intervals, we show that the asymptotic Gaussian distribution is not a good approximation for the Watterson estimator
Journal title :
Theoretical Population Biology
Serial Year :
1999
Journal title :
Theoretical Population Biology
Record number :
773386
Link To Document :
بازگشت