Title of article :
Phenotypic Diversity and Stability of Ecosystem Processes
Author/Authors :
Michel Loreau، نويسنده , , Narayan Behera، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1999
Abstract :
The resistance of an ecosystem to perturbations and the speed at which it recovers after the perturbations, which is called resilience, are two important components of ecosystem stability. It has been suggested that biodiversity increases the resilience and resistance of aggregated ecosystem processes. We test this hypothesis using a theoretical model of a nutrient-limited ecosystem in a heterogeneous environment. We investigate the stability properties of the model for its simplest possible configuration, i.e., a system consisting of two plant species and their associated detritus and local resource depletion zones. Phenotypic diversity within the plant community is described by differences in the nutrient uptake and mortality rates of the two species. The usual measure of resilience characterizes the system as a whole and thus also applies to aggregated ecosystem processes. As a rule this decreases with increased diversity, though under certain conditions it is maximum for an intermediate value of diversity. Resistance is a property that characterizes each system component and process separately. The resistance of the inorganic nutrient pools, hence of nutrient retention in the ecosystem, decreases with increased diversity. The resistance of both total plant biomass and productivity either monotonically decreases or increases over part of the parameter range with increased diversity. Furthermore, it is very sensitive to parameter values. These results support the view that there is no simple relationship between diversity and stability in equilibrium deterministic systems, whether at the level of populations or aggregated ecosystem processes. We discuss these results in relation to recent experiments.
Keywords :
Perturbation , nutrient cycling , Resistance , Energy flow , stability. , Ecosystem processes , productivity , biodiversity , Resilience
Journal title :
Theoretical Population Biology
Journal title :
Theoretical Population Biology