Title of article :
Competition in size-structured populations: mechanisms inducing cohort formation and population cycles
Author/Authors :
Andre M. de Roos، نويسنده , , Lennart Persson، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2003
Pages :
16
From page :
1
To page :
16
Abstract :
In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer–resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if mortality and/or development is independent of food density, i.e. in a situation with a constant juvenile developmental delay and a constant, food-independent background mortality. Thus, the oscillations that occur when juveniles are more competitive are induced by the juvenile delay per se. When juveniles exert a larger foraging pressure on the shared resource, maturation implies an increase not only in adult density, but also in food density and consequently fecundity. Our analysis suggests that this correlation in time between adult density and fecundity is crucial for the occurrence of population cycles when juveniles are competitively superior.
Keywords :
Statedependentdelay , Size-structured populations , stability , mathematical models , intraspecific competition , Cohort competition , Population feedback
Journal title :
Theoretical Population Biology
Serial Year :
2003
Journal title :
Theoretical Population Biology
Record number :
773698
Link To Document :
بازگشت