Title of article :
Ewens’ sampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles
Author/Authors :
Robert C. Griffiths، نويسنده , , Sabin Lessard، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2005
Abstract :
Ewens’ sampling formula, the probability distribution of a configuration of alleles in a sample of genes under the infinitely-many-alleles model of mutation, is proved by a direct combinatorial argument. The distribution is extended to a model where the population size may vary back in time. The distribution of age-ordered frequencies in the population is also derived in the model, extending the GEM distribution of age-ordered frequencies in a model with a constant-sized population. The genealogy of a rare allele is studied using a combinatorial approach.
A connection is explored between the distribution of age-ordered frequencies and ladder indices and heights in a sequence of random variables. In a sample of n genes the connection is with ladder heights and indices in a sequence of draws from an urn containing balls labelled 1,2,…,n; and in the population the connection is with ladder heights and indices in a sequence of independent uniform random variables.
Keywords :
Age distribution of alleles , GEM distribution , Infinitely-many-alleles model , Ladder indicesand heights , Poisson–Dirichlet process , coalescent process , Urn model , Ewens’ sampling formula
Journal title :
Theoretical Population Biology
Journal title :
Theoretical Population Biology