Title of article :
Electrokinetic remediation of heavy metal-contaminated soils under reducing environments
Author/Authors :
Krishna R. Reddy ، نويسنده , , Supraja Chinthamreddy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
14
From page :
269
To page :
282
Abstract :
This paper describes the migration of hexavalent chromium, Cr(VI), nickel, Ni(II), and cadmium, Cd(II), in clayey soils that contain different reducing agents under an induced electric potential. Bench-scale electrokinetic experiments were conducted using two different clays, kaolin and glacial till, both with and without a reducing agent. The reducing agent used was either humic acid, ferrous iron, or sulfide, in a concentration of 1000 mg/kg. These soils were then spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1000, 500 and 250 mg/kg, respectively, and tested under an induced electric potential of 1 VDC/cm for a duration of over 200 h. The reduction of chromium from Cr(VI) to Cr(III) occurred prior to electrokinetic treatment. The extent of this Cr(VI) reduction was found to be dependent on the type and amount of reducing agents present in the soil. The maximum reduction occurred in the presence of sulfides, while the minimum reduction occurred in the presence of humic acid. The concentration profiles in both soils following electrokinetic treatment showed that Cr(VI) migration was retarded significantly in the presence of sulfides due both to the reduction of Cr(VI) to Cr(III) as well as an increase in soil pH. This low migration of chromium is attributed to: (1) migration of Cr(VI) and the reduced Cr(III) fraction in opposite directions, (2) low Cr(III) migration due to adsorption and precipitation in high pH regions near the cathode in kaolin and throughout the glacial till, and (3) low Cr(VI) migration due to adsorption in low pH regions near the anode in both soils. Ni(II) and Cd(II) migrated towards the cathode in kaolin; however, the migration was significantly retarded in the presence of sulfides due to increased pH through most of the soil. Initial high pH conditions within the glacial till resulted in Ni(II) and Cd(II) precipitation, so the effects of reducing agenets were inconsequential. Overall, this study demonstrated that the reducing agents, particularly sulfides, in soils may affect redox chemistry and soil pH, ultimately affecting the electrokinetic remediation process.
Keywords :
remediation , clays , electrokinetic remediation , soils , nickel , Reducing agents , oxidation-reduction , Heavy metals , chromium , Electrokinetics , Cadmium
Journal title :
Waste Management
Serial Year :
1999
Journal title :
Waste Management
Record number :
774426
Link To Document :
بازگشت