Title of article :
Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater
Author/Authors :
Gui-Peng Yang، نويسنده , , SHUICHI WATANABE ، نويسنده , , SHIZUO TSUNOGAI، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
17
From page :
137
To page :
153
Abstract :
Laboratory experiments, along with in situ investigation in Funka Bay, Japan, were conducted to determine the enrichment factor (EF) of dimethylsulfide (DMS) in the sea surface microlayer, as well as its the production and consumption rates. The EF of DMS in the microlayer was largely affected by various factors including sampling methods, sampling thickness, temperature, salinity, and DMS concentration in bulk water. In all cases but the sealed system, a part of DMS in the microlayer was always unavoidably lost during sampling. High temperature, great wind speed, and slow sampling would increase the extent of loss of DMS due to volatilization. In the field, the screen-collected samples usually exhibited greater microlayer enrichment for DMS than the plate-collected samples, showing that the screen sampler might be more effective for collecting the in situ microlayer DMS. The production and consumption rates of DMS in the surface microlayer were higher than those in the bulk water and these two rates were significantly correlated with the microlayer DMS concentrations. Moreover, the EF of DMS appeared to be related to the microlayer production rate of DMS, providing evidence supporting the observed DMS enrichment in the microlayer. The DMS production and consumption rates were not directly related to its concentrations in the bulk water, suggesting that the processes of production and consumption of DMS were very complex. In the surface microlayer, the biological turnover time of DMS varied from 0.4 to 1.9 days, with an average of 0.9 days, which was about 540-fold greater than the mean DMS sea–air turnover time (2.4 min). Thus, the biological process occurring within the microlayer can be neglected when we consider the sea–air exchange of DMS. Considering the microlayer production rate of DMS (an average of 9.7 nM day−1) to be too small to counteract the sea-to-air removal of DMS, the main source of DMS in the microlayer appears to be through vertical transport by turbulent diffusion from the underlying water.
Keywords :
Production and consumption rates , Funka Bay , Surface microlayer , dimethylsulfide , sea–air flux
Journal title :
Marine Chemistry
Serial Year :
2001
Journal title :
Marine Chemistry
Record number :
776360
Link To Document :
بازگشت