Title of article :
Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer
Author/Authors :
Li، X نويسنده , , Tremoleda، JL نويسنده , , Allen، WR نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Abstract :
The effects of repeated passage in vitro of fetal fibroblast cells (FFC) and adult fibroblast cells (AFC) on nuclear remodelling and first embryonic division when used to reconstruct horse oocytes, and the reasons for the developmental block in progression to the two-cell stage were investigated. A total of 463 metaphase II oocytes produced 427 fibroblast-cytoplasm couplets after nuclear transfer, which finally resulted in 319 reconstructed oocytes. With increasing numbers of passages, the rates of nuclear remodelling decreased in both types of donor cell; about half of the fused donor cell nuclei showed the S-G2prometaphase stages of the first embryonic division 18-20 h after cell-fusion treatment, irrespective of the number of donor cell passages (FFC: 49%; AFC: 53%). The rates of first embryonic division in the reconstructed oocytes fell with increasing age of the donor cells (FFC: 32%-26%-23%; AFC: 27%-23%-24%) and these rates were significantly lower than those obtained from metaphase II oocytes activated parthenogenetically (79%, P < 0.05). Microscopic analysis of the organization of the first embryonic division in the developmentally blocked oocytes reconstructed with either FFC or AFC showed that most of these (FFC: 78%; AFC: 92%) could not form the mitotic spindle and the metaphase plate of chromosomes. These findings indicate that either fetal or adult fibroblasts that have undergone relatively few passages in vitro are most suitable as donors. However, both types of cell have lower potential to restart first embryonic development after nuclear transfer than do the equivalent cells in other species. Improvement in the rate of donor cell nuclear progression from S-G2-prometaphase to beyond the metaphase stage, and the normal organization of first embryonic development in reconstructed horse oocytes, would seem to be the key to the production of cloned embryos in this species.
Keywords :
Rinderpest , Seromonitoring , Seroprevalence , Outbreaks , Uganda , Serosurveillance
Journal title :
Reproduction
Journal title :
Reproduction