Title of article :
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors
Author/Authors :
Motoi Tobita، نويسنده , , Tetsuo Nishikawa، نويسنده , , Renpei Nagashima، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
HERG attracts attention as a risk factor for arrhythmia, which might trigger torsade de pointes. A highly accurate classifier of chemical compounds for inhibition of the HERG potassium channel is constructed using support vector machine. For two test sets, our discriminant models achieved 90% and 95% accuracy, respectively. The classifier is even applied for the prediction of cardio vascular adverse effects to achieve about 70% accuracy. While modest inhibitors are partly characterized by properties linked to global structure of a molecule including hydrophobicity and diameter, strong inhibitors are exclusively characterized by properties linked to substructures of a molecule.
Keywords :
In silico , SVM , prediction , discriminant analysis , HERG
Journal title :
Bioorganic & Medicinal Chemistry Letters
Journal title :
Bioorganic & Medicinal Chemistry Letters