Title of article :
Hydantoin derivative formation from oxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) and incorporation of 14C-labeled 8-oxodG into the DNA of human breast cancer cells
Author/Authors :
Sang Soo Hah، نويسنده , , Hyung M. Kim، نويسنده , , Rhoda A. Sumbad، نويسنده , , Paul T. Henderson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
5
From page :
3627
To page :
3631
Abstract :
One-electron oxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) yielded a guanidinohydantoin derivative (dGh) and a spiroiminodihydantoin derivative (dSp), both putatively mutagenic products that may be formed in vivo. The nucleoside dGh was the major product at room temperature, regardless of pH. The results are contrary to previously published model studies using 2′,3′,5′-triacetoxy-8-oxo-7,8-dihydroguanosine (Luo, W.; Miller, J. G.; Rachlin, E. M.; Burrows, C. J. Org. Lett. 2000, 2, 613; Luo, W.; Miller, J.G.; Rachlin, E.M.; Burrows, C.J. Chem. Res. Toxicol. 2001, 14, 927), who observed a spiroiminodihydantoin derivative as the major product at neutral pH. Clearly, the functional groups attached to the ribose moiety of 8-oxodG influence the oxidation chemistry of the nucleobase derivative. To explore this chemistry in vivo, 14C-labeled 8-oxodG was synthesized and incubated with growing MCF-7 human breast cancer cells, resulting in the incorporation of the compound into cellular DNA as measured by a novel accelerator mass spectrometry assay.
Journal title :
Bioorganic & Medicinal Chemistry Letters
Serial Year :
2005
Journal title :
Bioorganic & Medicinal Chemistry Letters
Record number :
795849
Link To Document :
بازگشت