Author/Authors :
Giovanni Cianchetta، نويسنده , , Yi Li، نويسنده , , Jiesheng Kang، نويسنده , , David Rampe، نويسنده , , Arnaldo Fravolini، نويسنده , , Gabriele Cruciani، نويسنده , , Roy J. Vaz، نويسنده ,
Abstract :
We report here a general method for the prediction of hERG potassium channel blockers using computational models generated from correlation analyses of a large dataset and pharmacophore-based GRIND descriptors. These 3D-QSAR models are compared favorably with other traditional and chemometric based HQSAR methods.