Title of article :
Generalized Strong Pseudoprime Tests and Applications
Author/Authors :
Pedro Berrizbeitia، نويسنده , , T. G. Berry، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
10
From page :
151
To page :
160
Abstract :
We describe probabilistic primality tests applicable to integers whose prime factors are all congruent to 1 mod r where r is a positive integer;r = 2 is the Miller–Rabin test. We show that if ν rounds of our test do not find n ≠ = (r + 1)2composite, then n is prime with probability of error less than (2 r) − ν. Applications are given, first to provide a probabilistic primality test applicable to all integers, and second, to give a test for values of cyclotomic polynomials.
Journal title :
Journal of Symbolic Computation
Serial Year :
2000
Journal title :
Journal of Symbolic Computation
Record number :
805466
Link To Document :
بازگشت