Title of article :
Gröbner Bases Applied to Finitely Generated Field Extensions
Author/Authors :
J?rn Müller-Quade، نويسنده , , Rainer Steinwandt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
22
From page :
469
To page :
490
Abstract :
Using a constructive field-ideal correspondence it is shown how to compute the transcendence degree and a (separating) transcendence basis of finitely generated field extensionsk (x) / k(g), resp. how to determine the (separable) degree if k(x) / k(g) is algebraic. Moreover, this correspondence is used to derive a method for computing minimal polynomials and deciding field membership. Finally, a connection between certain intermediate fields of k(x) / k(g) and a minimal primary decomposition of a suitable ideal is described. For Galois extensions the field-ideal correspondence can also be used to determine the elements of the Galois group.
Journal title :
Journal of Symbolic Computation
Serial Year :
2000
Journal title :
Journal of Symbolic Computation
Record number :
805485
Link To Document :
بازگشت