Title of article :
Formal Solutions of Linear PDEs and Convex Polyhedra
Author/Authors :
F. Aroca، نويسنده , , J. Cano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
21
From page :
717
To page :
737
Abstract :
The Newton polygon construction for ODEs, and Malgrange–Ramis polygon for partial differential equations in one variable are generalized in order to give an algorithm to find solutions of a linear partial differential equation at a singularity. The solutions found involve exponentials, logarithms and Laurent power series with exponents contained in a strongly convex cone
Journal title :
Journal of Symbolic Computation
Serial Year :
2001
Journal title :
Journal of Symbolic Computation
Record number :
805593
Link To Document :
بازگشت