Title of article :
Elements of small norm in Shanks’ cubic extensions of imaginary quadratic fields
Author/Authors :
Peter Kirschenhofer، نويسنده , , J?rg M. Thuswaldner، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
1471
To page :
1486
Abstract :
Let be an imaginary quadratic number field with ring of integers Zk and let k(α) be the cubic extension of k generated by the polynomial ft(x)=x3−(t−1)x2−(t+2)x−1 with t Zk. In the present paper we characterize all elements γ Zk[α] with norms satisfying Nk(α)/k≤2t+1 for t≥14. This generalizes a corresponding result by Lemmermeyer and Pethő for Shanks’ cubic fields over the rationals.
Keywords :
Shanks’ extension , Small norm
Journal title :
Journal of Symbolic Computation
Serial Year :
2004
Journal title :
Journal of Symbolic Computation
Record number :
805815
Link To Document :
بازگشت