Title of article :
Algorithms for graded injective resolutions and local cohomology over semigroup rings
Author/Authors :
David Helm، نويسنده , , Ezra Miller، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
23
From page :
373
To page :
395
Abstract :
Let Q be an affine semigroupgenerating , and fix a finitely generated -graded module M over the semigroup algebra for a field . We provide an algorithm to compute a minimal -graded injective resolution of M up to any desired cohomological degree. As an application, we derive an algorithm computing the local cohomology modules supported on any monomial (that is, -graded) ideal I. Since these local cohomology modules are neither finitely generated nor finitely cogenerated, part of this task is defining a finite data structure to encode them.
Keywords :
Semigroup ring , Graded-injective resolution , Computation , Gr?bner basis , Sectorpartition , Irreducible hull , Convex polyhedron , Monomial matrix , Lattice point , local cohomology
Journal title :
Journal of Symbolic Computation
Serial Year :
2005
Journal title :
Journal of Symbolic Computation
Record number :
805838
Link To Document :
بازگشت