Title of article
Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models
Author/Authors
Nicholas Eriksson، نويسنده , , Stephen E. Fienberg، نويسنده , , Alessandro Rinaldo، نويسنده , , Seth Sullivant، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
12
From page
222
To page
233
Abstract
We provide a polyhedral description of the conditions for the existence of the maximum likelihood estimate (MLE) for a hierarchical log-linear model. The MLE exists if and only if the observed margins lie in the relative interior of the marginal cone. Using this description, we give an algorithm for determining if the MLE exists. If the tree width is bounded, the algorithm runs in polynomial time. We also perform a computational study of the case of three random variables under the no three-factor effect model.
Keywords
Maximum likelihood estimate (MLE) , Tree width , Marginal cone , Collapsing
Journal title
Journal of Symbolic Computation
Serial Year
2006
Journal title
Journal of Symbolic Computation
Record number
805910
Link To Document