• Title of article

    A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs

  • Author/Authors

    RuyongFeng، نويسنده , , Xiao-Shan Gao، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    24
  • From page
    739
  • To page
    762
  • Abstract
    We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For a first order autonomous ODE F=0, we give an exact degree bound for its rational solutions, based on the connection between rational solutions of F=0 and rational parametrizations of the plane algebraic curve defined by F=0. For a first order autonomous ODE, we further give a polynomial time algorithm for computing a rational general solution if it exists based on the computation of Laurent series solutions and Padé approximants. Experimental results show that the algorithm is quite efficient.
  • Keywords
    Rational parametrizations , First order autonomous ODE , Pad´eapproximants , Polynomial time algorithm , Rational general solution , Laurent series
  • Journal title
    Journal of Symbolic Computation
  • Serial Year
    2006
  • Journal title
    Journal of Symbolic Computation
  • Record number

    805940