Title of article :
Counting with rational generating functions
Author/Authors :
Sven Verdoolaege، نويسنده , , Kevin Woods، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
17
From page :
75
To page :
91
Abstract :
We examine two different ways of encoding a counting function: as a rational generating function and explicitly as a function (defined piecewise using the greatest integer function). We prove that, if the degree and number of input variables of the (quasi-polynomial) function are fixed, there is a polynomial time algorithm which converts between the two representations. Examples of such counting functions include Ehrhart quasi-polynomials, vector partition functions, integer points in parametric polytopes, and projections of the integer points in parametric polytopes. For this last example, this algorithm provides the first known way to compute the explicit function in polynomial time. We rely heavily on results by Barvinok and Pommersheim [Barvinok, A., Pommersheim, J., 1999. An algorithmic theory of lattice points in polyhedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97). In: Math. Sci. Res. Inst. Publ., vol. 38. Cambridge Univ. Press, Cambridge, pp. 91–147], and also by Verdoolaege et al. [Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M., 2007. Counting integer points in parametric polytopes using Barvinok’s rational functions, Algorithmica 48 (1), 37–66].
Keywords :
Piecewise quasi-polynomials , Rational generating functions , Vector partition functions , Parametric countingfunctions , Parametric polytopes , Barvinok algorithm
Journal title :
Journal of Symbolic Computation
Serial Year :
2008
Journal title :
Journal of Symbolic Computation
Record number :
806042
Link To Document :
بازگشت