Title of article :
Approximate factorization of multivariate polynomials using singular value decomposition
Author/Authors :
Erich Kaltofen، نويسنده , , John P. May، نويسنده , , Zhengfeng Yang، نويسنده , , LihongZhi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
18
From page :
359
To page :
376
Abstract :
We describe the design, implementation and experimental evaluation of new algorithms for computing the approximate factorization of multivariate polynomials with complex coefficients that contain numerical noise. Our algorithms are based on a generalization of the differential forms introduced by W. Ruppert and S. Gao to many variables, and use singular value decomposition or structured total least squares approximation and Gauss–Newton optimization to numerically compute the approximate multivariate factors. We demonstrate on a large set of benchmark polynomials that our algorithms efficiently yield approximate factorizations within the coefficient noise even when the relative error in the input is substantial (10−3).
Keywords :
Multivariate polynomial factorization , Approximate factorization , Singular value decomposition , Gauss–Newton optimization , Numericalalgebra
Journal title :
Journal of Symbolic Computation
Serial Year :
2008
Journal title :
Journal of Symbolic Computation
Record number :
806057
Link To Document :
بازگشت