Title of article :
Molecular biology of sodium channels and their role in cardiac arrhythmias
Author/Authors :
Augustus O. Grant، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
296
To page :
305
Abstract :
The sodium channel is an integral membrane protein that plays a central role in conduction of the cardiac impulse in working cardiac myocytes and cells of the His-Purkinje system. The channel has two fundamental properties, ion conduction and gating. Specific domains of the channel protein control each of these functions. Ion conduction describes the mechanisms of the selective movement of sodium ion across the pore in the cell membrane. The selectivity of the channel for sodium ions is at least 10 times greater than that for other monovalent cations; the channel does not normally conduct divalent cations. Gating describes the opening and closing of the sodium channel pore. Sodium channels open transiently during membrane depolarization and close by a process termed inactivation. The cardiac sodium channel protein is a multimeric complex consisting of an α and an auxiliary β-subunit. The genes encoding the sodium channel have been cloned and sequenced. The α subunit gene, SCN5A is sufficient to express a functional channel. However, β subunit co-expression increases the level of channel expression and alters the voltage dependence of inactivation. Mutations of the sodium channel may result in incomplete inactivation during maintained depolarization, a decrease in the level of channel expression or acceleration of inactivation. The resulting clinical phenotypes include long QT syndrome, type III (LQT III), Brugada syndrome, and heart block. LQT III and Brugada syndromes have a high case fatality rate and are best treated with an implantable defibrillator.
Journal title :
The American Journal of Medicine
Serial Year :
2001
Journal title :
The American Journal of Medicine
Record number :
808206
Link To Document :
بازگشت