Title of article :
Absolutely indecomposable symmetric matrices
Author/Authors :
Hans A. Keller، نويسنده , , A. Herminia Ochsenius، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
11
From page :
83
To page :
93
Abstract :
Let A be a symmetric matrix of size n×n with entries in some (commutative) field K. We study the possibility of decomposing A into two blocks by conjugation by an orthogonal matrix Tset membership, variantMatn(K). We say that A is absolutely indecomposable if it is indecomposable over every extension of the base field. If K is formally real then every symmetric matrix A diagonalizes orthogonally over the real closure of K. Assume that K is a not formally real and of level s. We prove that in Matn(K) there exist symmetric, absolutely indecomposable matrices iff n is congruent to 0, 1 or −1 modulo 2s.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2002
Journal title :
Journal of Pure and Applied Algebra
Record number :
817107
Link To Document :
بازگشت