Title of article :
Categories with sums and right distributive tensor product
Author/Authors :
Anna Labella، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
24
From page :
273
To page :
296
Abstract :
Models for parallel and concurrent processes lead quite naturally to the study of monoidal categories (Inform. Comput. 88 (2) (1990) 105). In particular a category Tree of trees, equipped with a non-symmetric tensor product, interpreted as a concatenation, seems to be very useful to represent (local) behavior of non-deterministic agents able to communicate (Enriched Categories for Local and Interaction Calculi, Lecture Notes in Computer Science, Vol. 283, Springer, Berlin, 1987, pp. 57–70). The category Tree is also provided with a coproduct (corresponding to choice between behaviors) and the tensor product is only partially distributive w.r.t. it, in order to preserve non-determinism. Such a category can be properly defined as the category of the (finite) symmetric categories on a free monoid, when this free monoid is considered as a 2-category. The monoidal structure is inherited from the concatenation in the monoid. In this paper we prove that for every alphabet A, Tree(A), the category of finite A-labeled trees is equivalent to the free category which is generated by A and enjoys the afore-mentioned properties. The related category Beh(A), corresponding to global behaviors is also proven to be equivalent to the free category which is generated by A and enjoys a smaller set of properties.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2003
Journal title :
Journal of Pure and Applied Algebra
Record number :
817192
Link To Document :
بازگشت