Title of article :
Rings of analytic functions definable in o-minimal structure
Author/Authors :
M. Fujita، نويسنده , , M. Shiota، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
35
From page :
165
To page :
199
Abstract :
From the ring theoretical viewpoint, especially from the viewpoint of Real Algebra, we consider the ring of analytic functions definable in a given o-minimal expansion of the real field on a definable real analytic manifold. We find necessary conditions for o-minimal structures that Artin–Lang property, Real Nullstellensatz and Hilbert 17th Problem for this ring hold true in the three-dimensional case. We also prove that this ring is Noetherian in the three-dimensional case when the given o-minimal structure is the restricted analytic field.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2003
Journal title :
Journal of Pure and Applied Algebra
Record number :
817252
Link To Document :
بازگشت