Title of article :
Autoequivalences of blocks and a conjecture of Zassenhaus Original Research Article
Author/Authors :
Frauke M. Bleher، نويسنده , , Gerhard Hiss، نويسنده , , Wolfgang Kimmerle، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
21
From page :
23
To page :
43
Abstract :
In this paper, we show that for every finite group with cyclic Sylow p-subgroups the principal p-block B is rigid with respect to the trivial simple module. This means that each autoequivalence which fixes the trivial simple module fixes the isomorphism class of each finitely generated B-module. As a consequence each augmentation preserving automorphism of the integral group ring of PSL(2, p), p a rational prime, is given by a group automorphism followed by a conjugation in QPSL(2, p). In particular this proves a conjecture of Zassenhaus for these groups. Finally we show the same statement for a couple of other simple groups by different methods.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
1995
Journal title :
Journal of Pure and Applied Algebra
Record number :
817462
Link To Document :
بازگشت