Title of article :
The conditionsInt(R) subset of or equal to RS[X] andInt(RS) = Int(R)S for integer-valued polynomials Original Research Article
Author/Authors :
David E. Rush، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
17
From page :
287
To page :
303
Abstract :
LetR be an integral domain with quotient fieldK and letInt(R) = {f ε K[X]f(R) subset of or equal to R}. In this note we determine whenInt(R) = R[X] for an arbitrary integral domainR. More generally we determine whenInt(R) subset of or equal to RS[X] for a multiplicative subsetS ofR. In the case thatR is an almost Dedekind domain with finite residue fields we also determine whenInt(RS) = Int(R)S for each multiplicative subsetS ofR, and show that if this holds then finitely generated ideals ofInt(R) can be generated by two elements.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
1998
Journal title :
Journal of Pure and Applied Algebra
Record number :
817880
Link To Document :
بازگشت