Title of article :
Cardinal invariants and independence results in the poset of precompact group topologies Original Research Article
Author/Authors :
Alessandro Berarducci، نويسنده , , Dikran Dikranjan، نويسنده , , Marco Forti، نويسنده , , Stephen Watson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
We study the poset image(G) of all precompact Hausdorff group topologies on an infinite group G and its subposet imageσ(G) of topologies of weight σ, extending earlier results of Berhanu, Comfort, Reid, Remus, Ross, Dikranjan, and others. We show that if imageσ(G) ≠ empty set︀ and 2¦G/G′¦ = 2¦G¦ (in particular, if G is abelian) then the poset [2¦G¦]σ of all subsets of 2¦G¦ of size σ can be embedded into imageσ(G) (and vice versa). So the study of many features (depth, height, width, size of chains, etc.) of the poset imageσ(G) is reduced to purely set-theoretical problems. We introduce a cardinal function Dede(σ) to measure the length of chains in [X]σ for ¦X¦> σ generalizing the well-known cardinal function Ded(σ). We prove that Dede(σ) = Ded(σ) iff cf Ded(σ) ≠ σ+ and we use earlier results of Mitchell and Baumgartner to show that image is independent of Zermelo-Fraenkel set theory (ZFC). We apply this result to show that it cannot be established in ZFC whether imageimage1(Z) has chains of bigger size than those of the bounded chains.
Journal title :
Journal of Pure and Applied Algebra
Journal title :
Journal of Pure and Applied Algebra