Title of article
Invariants of Uq(sℓ(2)) and q-skew derivations Original Research Article
Author/Authors
Jeffrey Bergen، نويسنده , , Piotr Grzeszczuk، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
12
From page
27
To page
38
Abstract
If δ is a q-rmskew derivation of a ring R, then the subring of invariants is R(δ) − r ε R ¦ δ(r) = 0. We prove Theorem. Let δ be a q-skew derivation which is algebraic in its action on the K-algebra R. If R is (σ, δ)-semiprime and I ≠ 0 is a (σ, δ)-stable ideal of R, then I(δ) is a nonnilpotent ideal of R(δ).
This result is used to examine the actions of the Hopf algebra H = Uq(sℓ(2)). We show, under certain natural hypotheses, that for any H-stable ideal I ≠ 0 of a semiprime ring, the invariants of I under the action of Uq(sℓ(2)) are nonnilpotent.
Journal title
Journal of Pure and Applied Algebra
Serial Year
1998
Journal title
Journal of Pure and Applied Algebra
Record number
817998
Link To Document