• Title of article

    Nilpotent symmetric Jacobian matrices and the Jacobian conjecture

  • Author/Authors

    Michiel de Bondt، نويسنده , , Arno van den Essen، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    10
  • From page
    61
  • To page
    70
  • Abstract
    Let image be a polynomial map such that the Jacobian image of H is nilpotent and symmetric. The symmetric dependence problem, SDP(n), asks whether the rows of the matrix image are dependent over image. We show that if SDP(r) has an affirmative answer for all rless-than-or-equals, slantn, then the Jacobian conjecture holds for all image of the form F=x+H with image nilpotent and symmetric. As a consequence, we deduce the main result of (J. Pure Appl. Algebra, 189/1–3, 123–133), which asserts that the Jacobian conjecture holds for all polynomial maps of the form F=x+H, with image nilpotent, symmetric and homogeneous, and nless-than-or-equals, slant4.
  • Journal title
    Journal of Pure and Applied Algebra
  • Serial Year
    2004
  • Journal title
    Journal of Pure and Applied Algebra
  • Record number

    818266