Title of article :
r-Recognizability of Bn(q) and Cn(q) where n=2mgreater-or-equal, slanted4
Author/Authors :
Amir Khosravi، نويسنده , , Behrooz Khosravi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
17
From page :
149
To page :
165
Abstract :
Let G be a finite group and OC(G) be the set of order components of G. Denote by k(OC(G)) the number of isomorphism classes of finite groups H satisfying OC(H)=OC(G). It is proved that some finite groups are uniquely determined by their order components, i.e. k(OC(G))=1. Let n=2mgreater-or-equal, slanted4. As the main result of this paper, we prove that if q is odd, then k(OC(Bn(q)))=k(OC(Cn(q)))=2 and if q is even, then k(OC(Cn(q)))=1. A main consequence of our results is the validity of a conjecture of J.G. Thompson and another conjecture of W. Shi and J. Bi for the groups Cn(q), where n=2mgreater-or-equal, slanted4 and q is even.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2005
Journal title :
Journal of Pure and Applied Algebra
Record number :
818372
Link To Document :
بازگشت