Title of article :
Higher wild kernels and divisibility in the K-theory of number fields
Author/Authors :
C. Weibel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
23
From page :
222
To page :
244
Abstract :
The higher wild kernels are finite subgroups of the even K-groups of a number field F, generalizing Tateʹs wild kernel for K2. Each wild kernel contains the subgroup of divisible elements, as a subgroup of index at most two. We determine when they are equal, i.e., when the wild kernel is divisible in K-theory.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2006
Journal title :
Journal of Pure and Applied Algebra
Record number :
818531
Link To Document :
بازگشت