Title of article :
Artinian level modules of embedding dimension two
Author/Authors :
Jonas S?derberg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
417
To page :
432
Abstract :
We prove that a sequence of positive integers (h0,h1,…,hc) is the Hilbert function of an artinian level module of embedding dimension two if and only if hi−1−2hi+hi+1≤0 for all 0≤i≤c, where we assume that h−1=hc+1=0. This generalizes a result already known for artinian level algebras. We provide two proofs, one using a deformation argument, the other a construction with monomial ideals. We also discuss liftings of artinian modules to modules of dimension one.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2006
Journal title :
Journal of Pure and Applied Algebra
Record number :
818564
Link To Document :
بازگشت