Title of article
m-cluster categories and m-replicated algebras
Author/Authors
I. Assem، نويسنده , , T. Brustle، نويسنده , , R. Schiffler، نويسنده , , Marcos G. Todorov، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
18
From page
884
To page
901
Abstract
Let A be a hereditary algebra over an algebraically closed field. We prove that an exact fundamental domain for the m-cluster category image of A is the m-left part image of the m-replicated algebra of A. Moreover, we obtain a one-to-one correspondence between the tilting objects in image (that is, the m-clusters) and those tilting modules in image for which all non-projective–injective direct summands lie in image.
Furthermore, we study the module category of A(m) and show that a basic exceptional module with the correct number of non-isomorphic indecomposable summands is actually a tilting module. We also show how to determine the projective dimension of an indecomposable A(m)-module from its position in the Auslander–Reiten quiver.
Journal title
Journal of Pure and Applied Algebra
Serial Year
2008
Journal title
Journal of Pure and Applied Algebra
Record number
818902
Link To Document