• Title of article

    m-cluster categories and m-replicated algebras

  • Author/Authors

    I. Assem، نويسنده , , T. Brustle، نويسنده , , R. Schiffler، نويسنده , , Marcos G. Todorov، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    18
  • From page
    884
  • To page
    901
  • Abstract
    Let A be a hereditary algebra over an algebraically closed field. We prove that an exact fundamental domain for the m-cluster category image of A is the m-left part image of the m-replicated algebra of A. Moreover, we obtain a one-to-one correspondence between the tilting objects in image (that is, the m-clusters) and those tilting modules in image for which all non-projective–injective direct summands lie in image. Furthermore, we study the module category of A(m) and show that a basic exceptional module with the correct number of non-isomorphic indecomposable summands is actually a tilting module. We also show how to determine the projective dimension of an indecomposable A(m)-module from its position in the Auslander–Reiten quiver.
  • Journal title
    Journal of Pure and Applied Algebra
  • Serial Year
    2008
  • Journal title
    Journal of Pure and Applied Algebra
  • Record number

    818902