Title of article :
m-cluster categories and m-replicated algebras
Author/Authors :
I. Assem، نويسنده , , T. Brustle، نويسنده , , R. Schiffler، نويسنده , , Marcos G. Todorov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
18
From page :
884
To page :
901
Abstract :
Let A be a hereditary algebra over an algebraically closed field. We prove that an exact fundamental domain for the m-cluster category image of A is the m-left part image of the m-replicated algebra of A. Moreover, we obtain a one-to-one correspondence between the tilting objects in image (that is, the m-clusters) and those tilting modules in image for which all non-projective–injective direct summands lie in image. Furthermore, we study the module category of A(m) and show that a basic exceptional module with the correct number of non-isomorphic indecomposable summands is actually a tilting module. We also show how to determine the projective dimension of an indecomposable A(m)-module from its position in the Auslander–Reiten quiver.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2008
Journal title :
Journal of Pure and Applied Algebra
Record number :
818902
Link To Document :
بازگشت