Title of article :
Divisorial components of the Petri locus for pencils
Author/Authors :
Abel Castorena، نويسنده , , Montserrat Teixidor i Bigas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
1500
To page :
1508
Abstract :
The locus in the moduli space of curves where the Petri map fails to be injective is called the Petri locus. In this paper we provide a new proof on the existence of Divisorial components in the Petri locus for the case of pencils. For this proof we produce some special reducible curves (chains of elliptic components) in the Petri locus and we show that such curves have only a finite number of pencils for which the Petri map is not injective.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2008
Journal title :
Journal of Pure and Applied Algebra
Record number :
818941
Link To Document :
بازگشت