Title of article :
Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP
Author/Authors :
Irina Rozovsky، نويسنده , , Min Wei، نويسنده , , Todd E. Morgan، نويسنده , , Caleb E. Finch، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
11
From page :
705
To page :
715
Abstract :
Aging is associated with neuron atrophy and impaired sprouting after lesions. In contrast during normal aging without neurodegenerative diseases, astrocytes display increasing activation, with progressive increases of glial fibrillary acidic protein (GFAP) beginning before midlife. Because many neuronal functions depend on astrocytic support, we developed a heterochronic co-culture system to study influences of aging astrocytes on neurons. Neurite outgrowth by embryonic neurons (E18) was markedly less when co-cultured with confluent astrocytes derived from old (24 mo) versus young (3 mo) cortex. These impairments were reversible. Diminishing the GFAP levels of old astrocytes by RNAi restored neurite outgrowth, whereas overexpression of GFAP in young astrocytes modeled these effects of aging by reducing neurite outgrowth. Quantitative relationships were found such that neurites were co-localized with high intensity laminin, which both varied inversely with GFAP. These results implicate increased astrocytic GFAP expression as a proximal cause of neuron atrophy during normal aging.
Keywords :
Laminin , aging , Astrocytes , GFAP , Neuronal sprouting
Journal title :
Neurobiology of Aging
Serial Year :
2005
Journal title :
Neurobiology of Aging
Record number :
820624
Link To Document :
بازگشت