Title of article :
Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian conjecture Original Research Article
Author/Authors :
Arno van den Essen، نويسنده , , Arno van den Essen and Engelbert Hubbers، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Abstract :
Let H : kn → kn be a polynomial map. It is shown that the Jacobian matrix JH is strongly nilpotent if and only if JH is linearly triangularizable if and only if the polynomial map F = X + H is linearly triangularizable. Furthermore it is shown that for such maps F, sF is linearizable for almost all s set membership, variant k (except a finite number of roots of unity).
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications