Title of article :
An inequality for positive definite matrices with applications to combinatorial matrices
Author/Authors :
Michael G. Neubauer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
12
From page :
163
To page :
174
Abstract :
If is a positive definite Hermitian matrix, d the average of the diagonal entries of A, and f the average of the absolute values of the off-diagonal entries of A, then det A (d − f)n−1[d + (n − 1)f]. As a corollary we obtain a strengthening of Hadamardʹs inequality for positive definite matrices. The results can be used to prove inequalities for the determinants of (± 1) matrices, (0, 1) matrices, positive matrices, stochastic matrices, and constant-column-sum matrices.
Journal title :
Linear Algebra and its Applications
Serial Year :
1997
Journal title :
Linear Algebra and its Applications
Record number :
822243
Link To Document :
بازگشت