Title of article :
An upper bound for the permanent of a nonnegative matrix Original Research Article
Author/Authors :
Suk-Geun Hwang، نويسنده , , Arnold R. Kr?uter، نويسنده , , T. S. Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
5
From page :
259
To page :
263
Abstract :
Let A be a fully indecomposable, nonnegative matrix of order n with row sums rl,rn, and let si equal the smallest positive element in row i of A. We prove the permanental inequality image and characterize the case of equality. In 1984 Donald, Elwin, Hager, and Salamon gave a graph-theoretic proof of the special case in which A is a nonnegative integer matrix.
Journal title :
Linear Algebra and its Applications
Serial Year :
1998
Journal title :
Linear Algebra and its Applications
Record number :
822510
Link To Document :
بازگشت