Title of article :
On a conjecture of Fiedler and Markham Original Research Article
Author/Authors :
Xuerong Yong، نويسنده , , Zheng Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
259
To page :
267
Abstract :
For the Hadamard product A ○ A−1 of an M-matrix A and its inverse A−1, Fiedler and Markham conjectured that q(A ○ A−1) greater-or-equal, slanted 2/n (see M. Fiedler and T.L. Markham, Linear Algebra Appl. 101 (1988) 1–8), where q(A ○ A−1) is the smallest eigenvalue (in modulus) of A ○ A−1. The present paper studies this conjecture (an incorrect proof is given in Li Ching and Chen Ji-cheng. Linear Algebra Appl. 144 (1991) 171–178), and establishes q(A ○ A−1) > (2/n)((n − 1)/n). For some special matrices, the conjecture is proved.
Journal title :
Linear Algebra and its Applications
Serial Year :
1999
Journal title :
Linear Algebra and its Applications
Record number :
822647
Link To Document :
بازگشت