Title of article :
Not all GKK τ-matrices are stable Original Research Article
Author/Authors :
Olga Holtz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
10
From page :
235
To page :
244
Abstract :
Hermitian positive definite, totally positive, and nonsingular M-matrices enjoy many common properties, in particular: (A) positivity of all principal minors, (B) weak sign symmetry, (C) eigenvalue monolonicity, (D) positive stability. The class of GKK matrices is defined by properties (A) and (B), whereas the class of nonsingular τ-matrices by (A) and (C). It was conjectured that: (A), (B) implies (D) [D. Carlson, J. Res. Nat. Bur. Standards Sect. B 78 (1974) 1–2], (A), (C) implies (D) [G.M. Engel and H. Schneider, Linear and Multilinear Algebra 4 (1976) 155–176]. (A), (B) implies a property stronger than (D) [R. Varga, Numerical Methods in Linear Algebra, 1978, pp. 5–15], (A), (B), (C) implies (D) [D. Hershkowitz, Linear Algebra Appl. 171 (1992) 161–186]. We describe a class of unstable GKK τ-matrices, thus disproving all four conjectures.
Journal title :
Linear Algebra and its Applications
Serial Year :
1999
Journal title :
Linear Algebra and its Applications
Record number :
822710
Link To Document :
بازگشت