Title of article :
On almost regular tournament matrices Original Research Article
Author/Authors :
Carolyn Eschenbach، نويسنده , , Frank Hall، نويسنده , , Rohan Hemasinha، نويسنده , , Stephen J. Kirkland، نويسنده , , Zhongshan Li، نويسنده , , Bryan L. Shader، نويسنده , , Jeffrey L. Stuart، نويسنده , , James R. Weaver، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Spectral and determinantal properties of a special class
image
of 2n×2n almost regular tournament matrices are studied. In particular, the maximum Perron value of the matrices in this class is determined and shown to be achieved by the Brualdi–Li matrix, which has been conjectured to have the largest Perron value among all tournament matrices of even order. We also establish some determinantal inequalities for matrices in
image
and describe the structure of their associated walk spaces.
Keywords :
Brualdi–Li conjecture , Determinant , Spectralradius , Tournament , Almost regular tournament , Eigenvalues
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications