Title of article
On almost regular tournament matrices Original Research Article
Author/Authors
Carolyn Eschenbach، نويسنده , , Frank Hall، نويسنده , , Rohan Hemasinha، نويسنده , , Stephen J. Kirkland، نويسنده , , Zhongshan Li، نويسنده , , Bryan L. Shader، نويسنده , , Jeffrey L. Stuart، نويسنده , , James R. Weaver، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
19
From page
103
To page
121
Abstract
Spectral and determinantal properties of a special class
image
of 2n×2n almost regular tournament matrices are studied. In particular, the maximum Perron value of the matrices in this class is determined and shown to be achieved by the Brualdi–Li matrix, which has been conjectured to have the largest Perron value among all tournament matrices of even order. We also establish some determinantal inequalities for matrices in
image
and describe the structure of their associated walk spaces.
Keywords
Brualdi–Li conjecture , Determinant , Spectralradius , Tournament , Almost regular tournament , Eigenvalues
Journal title
Linear Algebra and its Applications
Serial Year
2000
Journal title
Linear Algebra and its Applications
Record number
822918
Link To Document