• Title of article

    On almost regular tournament matrices Original Research Article

  • Author/Authors

    Carolyn Eschenbach، نويسنده , , Frank Hall، نويسنده , , Rohan Hemasinha، نويسنده , , Stephen J. Kirkland، نويسنده , , Zhongshan Li، نويسنده , , Bryan L. Shader، نويسنده , , Jeffrey L. Stuart، نويسنده , , James R. Weaver، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    19
  • From page
    103
  • To page
    121
  • Abstract
    Spectral and determinantal properties of a special class image of 2n×2n almost regular tournament matrices are studied. In particular, the maximum Perron value of the matrices in this class is determined and shown to be achieved by the Brualdi–Li matrix, which has been conjectured to have the largest Perron value among all tournament matrices of even order. We also establish some determinantal inequalities for matrices in image and describe the structure of their associated walk spaces.
  • Keywords
    Brualdi–Li conjecture , Determinant , Spectralradius , Tournament , Almost regular tournament , Eigenvalues
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    2000
  • Journal title
    Linear Algebra and its Applications
  • Record number

    822918