Title of article :
On almost regular tournament matrices Original Research Article
Author/Authors :
Carolyn Eschenbach، نويسنده , , Frank Hall، نويسنده , , Rohan Hemasinha، نويسنده , , Stephen J. Kirkland، نويسنده , , Zhongshan Li، نويسنده , , Bryan L. Shader، نويسنده , , Jeffrey L. Stuart، نويسنده , , James R. Weaver، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
19
From page :
103
To page :
121
Abstract :
Spectral and determinantal properties of a special class image of 2n×2n almost regular tournament matrices are studied. In particular, the maximum Perron value of the matrices in this class is determined and shown to be achieved by the Brualdi–Li matrix, which has been conjectured to have the largest Perron value among all tournament matrices of even order. We also establish some determinantal inequalities for matrices in image and describe the structure of their associated walk spaces.
Keywords :
Brualdi–Li conjecture , Determinant , Spectralradius , Tournament , Almost regular tournament , Eigenvalues
Journal title :
Linear Algebra and its Applications
Serial Year :
2000
Journal title :
Linear Algebra and its Applications
Record number :
822918
Link To Document :
بازگشت