Title of article :
P-matrix completions under weak symmetry assumptions Original Research Article
Author/Authors :
Shaun M. Fallat، نويسنده , , Michael I. Gekhtman and Charles R. Johnson، نويسنده , , Juan R. Torregrosa، نويسنده , , Ana M. Urbano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
19
From page :
73
To page :
91
Abstract :
An n-by-n matrix is called a Π-matrix if it is one of (weakly) sign-symmetric, positive, nonnegative P-matrix, (weakly) sign-symmetric, positive, nonnegative P0,1-matrix, or Fischer, or Koteljanskii matrix. In this paper, we are interested in Π-matrix completion problems, that is, when a partial Π-matrix has a Π-matrix completion. Here, we prove that a combinatorially symmetric partial positive P-matrix has a positive P-matrix completion if the graph of its specified entries is an n-cycle. In general, a combinatorially symmetric partial Π-matrix has a Π-matrix completion if the graph of its specified entries is a 1-chordal graph. This condition is also necessary for (weakly) sign-symmetric P0- or P0,1-matrices
Keywords :
P-matrix , Matrix completion , graph , Combinatorial symmetry
Journal title :
Linear Algebra and its Applications
Serial Year :
2000
Journal title :
Linear Algebra and its Applications
Record number :
823008
Link To Document :
بازگشت