Title of article :
An always nontrivial upper bound for Laplacian graph eigenvalues Original Research Article
Author/Authors :
Oscar Rojo، نويسنده , , Ricardo Soto، نويسنده , , Héctor Rojo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Let G be a graph on vertex set image Let di be the degree of vi, let Ni be the set of neighbours of vi and let S be the number of vertices of Ssubset of or equal toV. In this note, we prove thatimageis an upper bound for the largest eigenvalue of the Laplacian matrix of G. For any G, this bound does not exceed the order of G.
Keywords :
Laplacian matrix , Spectral radius , graph
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications