Title of article :
Jordan isomorphisms of triangular matrix algebras over a connected commutative ring Original Research Article
Author/Authors :
K. I. Beidar، نويسنده , , M. Breimagear، نويسنده , , M. A. Chebotar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
5
From page :
197
To page :
201
Abstract :
Let image be a 2-torsionfree commutative ring with identity 1, and let image, rgreater-or-equal, slanted2, be the algebra of all upper triangular r×r (rgreater-or-equal, slanted2) matrices over image. Then image contains no idempotents except 0 and 1 if and only if every Jordan isomorphism of image onto an arbitrary algebra over image is either an isomorphism or an anti-isomorphism.
Keywords :
Jordan isomorphism , Triangular matrix algebra
Journal title :
Linear Algebra and its Applications
Serial Year :
2000
Journal title :
Linear Algebra and its Applications
Record number :
823018
Link To Document :
بازگشت