Title of article :
Hamiltonian square roots of skew-Hamiltonian matrices revisited Original Research Article
Author/Authors :
Khakim D. Ikramov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
7
From page :
101
To page :
107
Abstract :
Recently, H. Fassbender et al. [Linear Algebra Appl. 287 (1999) 125] proved the following theorem: Every real skew-Hamiltonian matrix W has a real Hamiltonian square root H, i.e., H2=W. We prove an analog of this theorem for complex matrices. Our approach may be of independent interest, namely, we use the polar decomposition of a nonsingular operator acting in a space with the symplectic inner product.
Keywords :
Hamiltonian matrices , Skew-Hamiltonian matrices , Symplectic matrices
Journal title :
Linear Algebra and its Applications
Serial Year :
2001
Journal title :
Linear Algebra and its Applications
Record number :
823201
Link To Document :
بازگشت