Title of article :
Optimally conditioned block matrices Original Research Article
Author/Authors :
L. Yu. Kolotilina، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
13
From page :
55
To page :
67
Abstract :
The paper provides a description of optimally conditioned Hermitian positive-definite block matrices, i.e., of matrices image , ngreater-or-equal, slantedmgreater-or-equal, slanted2, image ,i=1,…,m, such that image Here, image is the group of nonsingular block diagonal matrices with diagonal blocks of orders ni, i=1,…,m, and k(A) is the spectral condition number of A. The results obtained generalize those for the particular cases m=n and m=2, see [Proc. Amer. Math. Soc. 6 (1955) 340 and Zap. Nauchn. Sem. POMI, 268 (2000) 72], respectively.
Keywords :
Hermitian positive-definite matrices , Vector aggregation , Spectral condition number , Block scaling
Journal title :
Linear Algebra and its Applications
Serial Year :
2002
Journal title :
Linear Algebra and its Applications
Record number :
823405
Link To Document :
بازگشت