Title of article :
Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse Original Research Article
Author/Authors :
Harm Bart، نويسنده , , Torsten Ehrhardt، نويسنده , , Bernd Silbermann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
18
From page :
327
To page :
344
Abstract :
A logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic Banach algebra valued function. For functions possessing a meromorphic inverse with simple poles only, the logarithmic residues are identified as the sums of idempotents. With the help of this observation, the issue of left versus right logarithmic residues is investigated, both for connected and nonconnected underlying Cauchy domains. Examples are given to elucidate the subject matter.
Keywords :
Idempotent , Banach algebra , Sum ofidempotents , Logarithmic residue , Analytic/meromorphic function
Journal title :
Linear Algebra and its Applications
Serial Year :
2002
Journal title :
Linear Algebra and its Applications
Record number :
823446
Link To Document :
بازگشت