Title of article :
A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph Original Research Article
Author/Authors :
Jin-Long Shu، نويسنده , , Yuan Hong، نويسنده , , Kai Wen-Ren، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
7
From page :
123
To page :
129
Abstract :
Let G be a simple connected graph with n vertices. The largest eigenvalue of the Laplacian matrix of G is denoted by μ(G). Suppose the degree sequence of G is d1greater-or-equal, slantedd2greater-or-equal, slantedcdots, three dots, centeredgreater-or-equal, slanteddn. In this paper, we present a sharp upper bound of μ(G) image the equality holds if and only if G is a regular bipartite graph
Keywords :
Degree sequence , Adjacency spectral radius , Line graph , Laplacian spectral radius
Journal title :
Linear Algebra and its Applications
Serial Year :
2002
Journal title :
Linear Algebra and its Applications
Record number :
823526
Link To Document :
بازگشت