Title of article :
The Laplacian eigenvalues of mixed graphs Original Research Article
Author/Authors :
Xiaodong Zhang، نويسنده , , Rong Luo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
109
To page :
119
Abstract :
In this paper, we firstly give an upper bound for the second smallest Laplacian eigenvalue of mixed graphs which generalizes the results of Fiedler [Czechoslovake Math. J. 23 (1973) 298]. Then we present two sharp upper bounds for the largest Laplacian eigenvalues of mixed graphs in term of the largest, smallest degrees and average 2-degrees, which improve and generalize the main results of Merris [Linear Algebra Appl. 285 (1998) 33], Li and Pan [Linear Algebra Appl. 328 (2001) 153], respectively. In addition, we characterize all extreme mixed graphs which attain those upper bounds.
Keywords :
Quasi-bipartite , mixed graphs , Laplacian eigenvalue , vertex connectivity
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823820
Link To Document :
بازگشت