Title of article :
Generalizations of the Ostrowski–Brauer theorem Original Research Article
Author/Authors :
L. Yu. Kolotilina، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
65
To page :
80
Abstract :
The main theorem of this paper, which generalizes the Ostrowski–Brauer theorem and its previous extensions, provides conditions necessary and sufficient for the singularity of an irreducible matrix image satisfying the conditionsimageaiiajjgreater-or-equal, slantedRi(A)Rj(A),whereimageRk(A)=∑j≠kakj, k=1,…,n,for all i≠j such that aij+aji≠0 and implies a new description of the location of matrix eigenvalues in terms of ovals of Cassini and Gerschgorin circles.
Keywords :
Nonstrict diagonal dominance , singularity , Irreducibility , Nonsingularity , Gerschgorin circles , Sparsity pattern , Circuits , Ovals of Cassini
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823860
Link To Document :
بازگشت