Title of article :
Rings of invariants of 2×2 matrices in positive characteristic Original Research Article
Author/Authors :
S. G. Kuz’min، نويسنده , , A. N. Zubkov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
8
From page :
271
To page :
278
Abstract :
We prove that the rings of invariants of 2×2 matrices over an infinite field are Cohen–Macaulay. This result generalizes the similar theorem of Mehta and Ramadas in odd characteristics. Our approach is more elementary and it uses only some standard facts from the theory of modules with good filtrations and the theory of determinantal rings.
Keywords :
Cohen–Macaulay rings , Matrix invariants
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823896
Link To Document :
بازگشت